Brinyte T28 Artemis Flashlight Review

Brinyte T28 Artemis Flashlight Review

Today I have the Brinyte T28 Artemis Zoomy flashlight – one I asked specifically for.  It seems very interesting because it has red and green selectable (without attachments) and is also a zoomy!

Official Specs and Features

Here’s a link to the official product page.


There are two versions of the Brinyte T28 Artemis Zoomy flashlight.  First is the one you see here, with red, green, and white emitters.  There’s a second model which has White/IR850/IR940.


The price for these two models isn’t the same.  For the model seen here, you’ll pay $149.97.  The version with IR is $20 more, at $169.97.

Short Review

Let me say upfront that Brinyte was clear that the Brinyte T28 Artemis Zoomy is not a light aimed at enthusiasts like myself (and probably yourself).  They’re mainly right, as I don’t use red or green lights, and don’t need hunting lights.  I don’t think they said this as a means of mitigating expectations, though.  The truth is there’s a lot of stuff here that’s quite nice, but a few things that I don’t care for (namely, the very slow PWM), and the zoomy beam profile.  But the rotary switch is something I hope to see Brinyte use more, and the emitter selector is quite neat.

Long Review

The Big Table

Brinyte T28 Artemis Zoomy Flashlight
Emitter: White (Zoom)
Price in USD at publication time: 149.97
Cell: 1×21700 (included)
Runtime Graph
Switch Type: Rotary E-Switch
On-Board Charging? Yes
Charge Port Type:
Charge Graph
Power off Charge Port
Claimed Lumens (lm) 650
Measured Lumens (at 30s) 526 (80.9% of claim)^
Candela per Lumen 68.3
Claimed Throw (m) 525
Candela (Calculated) in cd (at 30s) 372lux @ 6.093m = 13810cd
Throw (Calculated) (m) 235.0 (44.8% of claim)^
All my Brinyte reviews!

^ Measurement disclaimer:  Testing flashlights is my hobby. I use hobbyist-level equipment for testing, including some I made myself. Try not to get buried in the details of manufacturer specifications versus measurements recorded here; A certain amount of difference (say, 10 or 15%) is perfectly reasonable.

What’s Included

Brinyte T28 Artemis Zoomy what's included

  • Brinyte T28 Artemis Zoomy flashlight
  • Brinyte USB-C Rechargeable 5000mAh 21700
  • Charge cable (USB to USB-C)
  • Remote switch
  • Spare o-rings (3)
  • Lanyard
  • Brinyte Wristband
  • Manual

Package and Manual

Brinyte T28 Artemis Zoomy box

Build Quality and Disassembly

Brinyte T28 Artemis Zoomy

Overall the build quality of the T28 Artemis is pretty good.  “For a zoomy” is a reasonable addition to that sentence but I’m not sure that’s fair.

Notice that side switch above.  That’s pretty interesting in itself.  What it does is even cooler – it’s an emitter selector!  Flipping that between G/W/R literally slides in the selected emitter!  It’s neat if nothing else.

The second bit of neatness here on the T28 is this dial on the tail.  This is a rotary and is actually a rotary.  It ramps from low to high very seamlessly, for all three emitter options.

Brinyte T28 Artemis Zoomy rotary tailswitch

Going from the top down, you can see the rotary switch first.  This is protected by a tail area (the lanyard holes), and in theory, would allow tailstanding (more on that later).

Brinyte T28 Artemis Zoomy rotary tailswitch

The body has no knurling but does have Brinyte’s logo.

Brinyte T28 Artemis Zoomy body

In the head area is the emitter selector switch.  This is a switch that physically moves the emitter.  That explains the size and the action of it.

Brinyte T28 Artemis Zoomy emitter selector

The head has limited cooling fins, but ample reeding which will help with going from zoom in to zoom out.

Brinyte T28 Artemis Zoomy head

Here’s a look at the lens.

Brinyte T28 Artemis Zoomy lens

The bezel is fluted, so light can escape when headstanding.

Brinyte T28 Artemis Zoomy logo

Here’s a view of the head fully extended and fully collapsed.

And of the emitter selector switch in all 3 positions.

Now about that rotary switch.  Mine is askew, and not just a little bit.  I know this “askew” bit is just a cap on the underlying rotary and is held in place by a set screw but…. this should be perfectly flat.  As it is, the offness is enough that the light will not tailstand.

Brinyte T28 Artemis Zoomy rotary tailswitch lanyard hole

I did remove that set screw (Hex screw, but Torx T6 worked), and I still couldn’t flatten the rotary switch.  So maybe it’s meant to be this way?

The remote switch is a whole tailcap replacement.  This does remove the rotary, but the Plus Minus buttons still allow ramping.

Brinyte T28 Artemis Zoomy remote switch

Threads on the T28 tailcap are unanodized, square-cut, and not too long.  They’re ok threads.

Brinyte T28 Artemis Zoomy tailcap threads


Brinyte T28 Artemis Zoomy head spring

Brinyte T28 Artemis Zoomy cell installed

Brinyte T28 Artemis Zoomy remote switch

Brinyte T28 Artemis Zoomy remote switch

Size and Comps

Dimension:  182~196mm(Length) x 25.4mm(Body Dia) x 54mm(Head Dia)
Net Weight: 200g/7.05oz (excluding battery)

If the flashlight will headstand, I’ll show it here (usually the third photo).  If the flashlight will tailstand, I’ll show that here, too (usually the fourth photo).

Here’s the test light with the venerable Convoy S2+.  Mine’s a custom “baked” edition Nichia 219b triple.  A very nice 18650 light.

And here’s the light beside my custom engraved TorchLAB BOSS 35, an 18350 light.  I reviewed the aluminum version of that light in both 35 and 70 formats.

Retention and Carry

Really there’s not much included for carry.  Just the included lanyard, which attaches through one of the two tailcap loops.

Brinyte T28 Artemis Zoomy tailcap lanyard

Brinyte T28 Artemis Zoomy lanyard installed

There’s no pouch, no magnet, no rail mount (though there is an accessory you could obtain).  So the lanyard is it!

Power and Runtime

Brinyte provides the compatible cell for the T28 Artemis.  It’s a 5000mAh lithium-ion cell, 21700 size.

Brinyte T28 Artemis Zoomy 21700

This cell seems fairly standard.  It’s not a flat top and the button on here is very subtle, but let’s call it a “button top.”  However, even actual-dimension 21700 cells (flat tops, unprotected) work just fine in the T28.

The cell is installed in the usual way – positive terminal toward the head.

Brinyte T28 Artemis Zoomy 21700 installed

Here’s a runtime.  Yes, just a single runtime….  Since it’s rotary and doesn’t have discrete outputs between low and high, I tested only high output.  Also, I didn’t test the red and green because I’m unclear how sensitive my luxmeter is to those outputs.

Brinyte T28 Artemis Zoomy runtime graph


While the light itself does not have charging, the cell included does.  It’s USB-C charging and is built into the positive end of the cell.

Brinyte T28 Artemis Zoomy 21700 USB-c charging

An appropriate charge cable is included:  USB to USB-C.

Here’s a charge graph cycle!

Brinyte T28 Artemis Zoomy charge graph

Modes and Currents

Mode Mode Claimed Output (lm) Claimed Runtime Measured Lumens Tailcap Amps
White High 650/360 135m 526 3.60
White Low 2% 0.01
Red High 140/55 220m 1.43
Red Low 2% 0.01
Green High 130/70 270m 1.43
Green Low 2% 0.01

Pulse Width Modulation

Here’s the real rub for me about the T28.  The pulse width modulation is extremely noticeable on essentially anything but the highest output.  I think even the least sensitive user would be able to notice this PWM, and probably be annoyed by it.  It was so slow that my normal timescale (50us) wouldn’t even capture it, and I had to broaden the scale.

This is a pretty good exposé on how pwm works, though.  Low is the left-most, and high is the right-most photo below.  The high peaks are “on” and the low valleys are “off.”  You can clearly see that on low, the light is only briefly in an on state, and off for much longer.  For the higher output, that’s practically flipped.  Off much less time than on.

Here’s the lowest and highest on my usual timescale:

For reference, here’s a baseline shot, with all the room lights off and almost nothing hitting the sensor.  Also, here’s the light with the worst PWM I could find.  I’m adding multiple timescales, so it’ll be easier to compare to the test light.  Unfortunately, the PWM on this light is so bad that it doesn’t even work with my normal scale, which is 50 microseconds (50us). 10ms5ms2ms1ms0.5ms0.2ms.  In a display faster than 0.2ms or so, the on/off cycle is more than one screen, so it’d just (very incorrectly) look like a flat line.  I wrote more about this Ultrafire WF-602C flashlight and explained a little about PWM too.

User Interface and Operation

As mentioned above, the T28 Artemis has a rotary interface.  The rotary is also an e-switch clicky, but it’s all one switch.

Brinyte T28 Artemis Zoomy pwm rotary switch

Mine doesn’t sit straight, and I wasn’t able to fix that, either, so that’s a bit of a strike.  The UI is dead simple, though.

Brinyte T28 Artemis Zoomy rotary switch

Hold the switch down to turn the light off or on.

It’ll come on in the output corresponding to where the rotary is in the dial.  Thus it’s possible to change the output level with the light off and always start in whatever output you want.

Besides that rotary switch (and not pictured here) is an indicator emitter.  If it’s green, things are working normally.  If things are working normally I expect you’d know this.  The indicator doesn’t help with battery level or anything else.  So I’m not entirely sure what’s the point….

Also part of the interface (but not really) is this emitter selector.  All this does is select between the emitter colors (which is an important part of the user interface, of course.)  This has nothing to do with electric operation of the light – it’s a mechanical change.  Also, it can be done with the light on or off, with no ill effect.

A final operation mechanism is a remote switch.  This is a whole tailcap replacement, and when using this tailcap you lose the rotary mechanism.  However, you gain a button ramping feature.  On and off are a separate button (in the center).

Brinyte T28 Artemis Zoomy remote switch

Here’s a UI table!

State Action Result
Off Hold Tail switch On to rotary-selected output
On Click Tail Switch Off
Any (manual specifie “On”) Move Emitter Selector switch Output is (or will be) the selected color
Any Turn tail switch clockwise or counterclockwise Output is higher or lower.
Off Click center button on remote switch On to previously used output
On Click center button on remote switch Off
On Hold “+” button on remote switch Output increases
On Hold “-” button on remote switch Output decreases

Notably with the remote switch, turning the light on no longer requires a “hold” – it’s immediate.  Everything else is mostly the same.

LED and Beam

The emitters in the T28 Artemis don’t seem to be named specifically.

Brinyte T28 Artemis Zoomy emitter

There are three, though – white, red, and green.  These are selected by a switch on the side of the light.  It’s a pretty interesting setup.

My opinion is that the beam shape both zoomed in and zoomed out leaves a bit to be desired.  In the throwiest output, the beam is just s projection of the emitter.  This is almost never the preferred beam profile, and I am not a fan here either.  Same with the floody output – the beam still has a big center projector, but picks up tons of artifacts along with the flood – it’s not a pure flood output.

These beamshots are always with the following settings:  f8, ISO100, 0.3s shutter, and manual 5000K exposure.  Flood photos are first for each emitter, followed by three spot photos.

Tint vs BLF-348 ( 219b version) (affiliate link)

I keep the test flashlight on the left, and the BLF-348 reference flashlight on the right.

I compare everything to the 219b BLF-348 because it’s inexpensive and has the best tint!


What I like

  • Rotary interface is very good.
  • The complete package even includes a remote switch
  • Interface is very easy

What I don’t like

  • Very noticeable PWM on almost all output levels.
  • Beam profile is not appealing


  • This light was provided by Brinyte for review. I was not paid to write this review.
  • This content originally appeared at  Please visit there for the best experience!
  • For flashlight-related patches, stickers, and gear, head over to!
  • Please use my referral link to help support!
Liked it? Take a second to support zeroair on Patreon!
Become a patron at Patreon!

2 thoughts on “Brinyte T28 Artemis Flashlight Review”

  1. u should also mention damn poor stabilization, which is at the level of noname t6 zoomie

    PWM is at the same level

    i am surprised they cannon calm down with this model

  2. Pingback: Flashlight News: Phreaky Briefing Issue 46 – PhotonPhreaks

Leave a Reply